基于虚拟源原理的源边界参数蒙特卡罗反演技术*

田自宁† 欧阳晓平 陈伟 王雪梅 邓宁 刘文彪 田言杰

(西北核技术研究院, 西安 710024)

(2019年7月16日收到; 2019年9月19日收到修改稿)

在就地 γ 谱仪搜索扫描测量 "热粒子"、"放射性汇集点"、"放射性汇集区" 过程中,只能给出污染源的大概位置,不能给出源的污染深度等边界参数.本文主要对虚拟技术在就地 γ 谱仪搜索扫描测量细化污染源边界中的应用进行了研究.将就地 γ 谱仪测量对象简化成衰减层 + 放射性热区 (测量目标源) + 衰减层 + 干扰源的四层理论模型,运用虚拟技术将源项层虚拟成点源,进一步简化了理论模型,使用蒙特卡罗方法模拟计算探测效率与峰谷比等参数,最后使用最小二乘法使模拟计算结果反演逼近源项实际参数,从而建立了源边界参数反演计算的理论方法及步骤.理论研究和实验结果一致,验证了所建立的计算模型和技术方法是正确可靠的.目前,对于均匀分布的放射性核素,该技术已经能够准确确定污染区域深度分布等边界参数,从而 在治理时达到废物处置减容的目的.同时,该技术对于禁核试核查目标核弹头惰层厚度参数的确定也具有重大的参考价值.

关键词:虚拟点源,参数表征,蒙特卡罗模拟,源边界 PACS: 29.30.Kv, 29.40.Wk, 29.25.Rm

DOI: 10.7498/aps.68.20191095

1 前 言

"热粒子"、"放射性汇集点"、"放射性汇集区" 的监测是目前国际上核辐射探测领域重点关注的 参数,其中放射性源边界是最为关键的参数.目前 国内外现有的就地γ谱仪搜索扫描测量及伽玛相 机成像技术,只能给出污染源的大概位置,而对于 源边界参数的确定目前研究较少,尤其是无法给出 核素深度方向的参数;通过出壳γ谱反推核弹头结 构材料厚度是一件比较复杂和难度较大的工作,需 要的参数多,解的不确定性大^[1].因此,亟待发展新 的测量方法和实验技术来解决这些问题.放射性源 边界测量的准确性最为关键的是探测效率因子这 个参数的准确刻度^[2,3],而国内外针对这个问题开 展的研究也非常多,在蒙特卡罗模拟刻度中主要使 用点源实验表征晶体参数^[4-10],提高了测量的准确 性;在虚拟刻度方面,国内外开展了虚拟点探测器 理论研究^[11-15], 虚拟点探测器模型由 Noteal^[15] 最 早提出,在处理探测器效率刻度问题中该模型被许 多研究者使用并进行了大量的实验验证. 在测量源 与探测器之间存在一定距离时可用虚拟的点探测 器来等效大体积的探测器,此时探测器峰效率将较 精确地满足平方反比定律,这样,对于一确定尺寸 的探头, 虚拟点探测器位置仅随光子能量的变化而 变化. 根据平方反比定律, 可求得空间任意一点处 点源的峰效率,然后可对点源效率积分求解得到体 源的探测效率,即使用点源完成了复杂体源的刻 度,简化和方便了仪器刻度工作.本文反向使用蒙 特卡罗模拟表征晶体参数的技术,结合虚拟点探测 器理论及虚拟源刻度方法等[16,17],根据测量能谱分 析,就可以确定放射性污染区域深度方向分布参 数,同时对反解核弹头惰层厚度具有参考意义.

© 2019 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 11405134) 资助的课题.

[†] 通信作者. E-mail: tzn1019@126.com

2 基本原理

HPGe 探测器晶体一般为圆柱状,射线与晶体 的作用可以认为是射线与晶体内一虚拟点探测器 作用,即将晶体等效为一个虚拟的点.这个虚拟的 点位置可能不止一个,但是为了简化模型和计算方 便,一般是在探测器中心对称轴线找到一个且唯一 一个代表性的点(代表点),该点距离晶体上表面的 距离又称有效作用深度.虚拟点探测器:对于辐射 探测器,在探测器中心对称轴线上存在有一个唯一 的代表点位置,其点探测器对参考点位置点源的探 测效率与探测器对点源的探测效率相等且满足平 方反比定律,即该点探测器叫探测器的虚拟点探测 器.虚拟点探测器刻度方法首先用于点源探测效率 的刻度,主要借用参考点位置的标准点源探测效率 值通过平方反比定律来计算空间不同位置处点源 的探测效率.

根据虚拟点探测器的理论,将探测器测量对象 也进行虚拟化, 定义虚拟点源概念. 虚拟点源: 对 于辐射探测器测量对象为单个体源或单个面源的 情况下,在探测器中心对称轴线上有一个唯一的代 表点位置,该位置的放射性点源全能峰探测效率与 所对应的放射性体源或面源的探测效率相等,该点 源叫做体源或面源的虚拟点源.在多数情况下,测 量对象可能不止一个源,有可能是多个源(体源、 面源和点源)组成,为了区分单个源的情况,在这 里引入等效虚拟点源.等效虚拟点源:对于辐射探 测器测量对象为混合源 (多个体源、面源和点源组 成)情况下,在探测器中心对称轴线上有一个唯一 的代表点位置,该位置的放射性点源全能峰探测效 率与混合源探测效率相等,该点源叫作混合源的等 效虚拟点源. 它和虚拟点源的区别是测量对象为多 个源,其他定义都一致.

在无源效率刻度中,蒙特卡罗模拟表征晶体参数的研究工作非常多,技术方法也非常成熟.其基本原理是:通过标准点源或体源(源的形状大小、材料和活度参数等完全已知)固定位置实验,获取 探测器的实验效率刻度值,再使用蒙特卡罗方法建立理论计算模型,调整理论计算模型中的晶体参数 使其计算效率值和实验值一致,从而达到表征晶体参数的目的.在这一表征的过程中测量对象源的参数是已知的,测量仪器晶体参数是未知的,但在实 际测量中经常会遇到大量测量对象未知的情况. 针 对这种情况,本文采用逆向思维,提出源边界参数 表征技术,即晶体参数已知,源边界参数未知. 其 基本原理和晶体参数表征技术类似:即首先通过实 验方法获得测量对象的峰谷比及全能峰探测效率 的实验值,再通过蒙特卡罗方法建立理论计算模 型,为了优化理论计算模型,使用虚拟技术将测量 对象虚拟成点源,计算调整理论模型中的源边界参 数并借助最小二乘方法使计算得到的峰谷比及效 率值不断逼近实验值. 具体过程是: 污染沙土的放 射性源项层可能会很复杂,可能有很多各种各样的 源组成,各个源之间又有沙土衰减层,但不管怎么 复杂,都将它们统一简化成如图1所示的四层理论 模型.

关心的测量对象目标源一般为体源 (目标体源),又称放射性"热区",若直接裸露于地表,就没 有图 1中最上一层沙土衰减层.同时,热区下方可 能存在其他放射源,我们称之为干扰源,干扰源是 一个相对概念,当关心它的参数时,也可以定为目 标源.热区和干扰源之间有衰减层,干扰源在一些 源项简单的测量中可能就不存在.本文的目标就是 在有干扰源存在的情况下反演出热区位置及厚度 参数.具体分三步反演.

第一步:等效虚拟点位置的实验反演计算.使 用虚拟技术将热区和深层干扰源虚拟成一个等效 虚拟点源,该虚拟点源包含了所有源项的辐射信 息.对于钚污染土,²⁴¹Am和²³⁹Pu的单位体积活度 比一般为常数,设为*Q* = *A*₂₃₉/*A*₂₄₁,其中*A*表示 活度 (Bq),其与探测效率的关系推导为:

$$A_{241} = \frac{N_{241}}{t \times \varepsilon_{241} \times P_{\gamma 241}},\tag{1}$$

$$A_{239} = \frac{N_{239}}{t \times \varepsilon_{239} \times P_{\gamma 239}},\tag{2}$$

$$Q = \frac{\varepsilon_{241}}{\varepsilon_{239}} \times \frac{P_{\gamma 241} \times N_{239}}{P_{\gamma 239} \times N_{241}},\tag{3}$$

其中 t 为测量时长 (s), N 表示特征射线全能峰计 数, ε 表示探测效率, 241 表示 241Am, 239 表示 ²³⁹Pu, P₂表示射线分支比. ²⁴¹Am 核素的 59.54 keV (分支比 0.359, 26.4 keV 分支比 0.024) 和 ²³⁹Pu 核 素的 51.62 keV (分支比 0.000271, 129 keV 分支 比 0.000062) 射线全能峰计数一般通过实际测量能 谱得到,分支比也是常数,因此从(3)式可以看出 活度比和探测效率比是一一对应的,因此,在图1 中对称轴上(使用 MCNP 程序模拟计算对称轴上 不同位置处点源探测效率)总能找到一个等效虚拟 点位置,该处的射线全能峰探测效率比算得的 ²³⁹Pu/²⁴¹Am 活度比应与给出的一致. 该步反演除 了得到等效虚拟点位置外还得到三个参数:实测 59.54 keV 射线的峰谷比以及等效虚拟点处 59.54 keV 和 26.4 keV 或 129 keV 射线全能峰探 测效率,这些参数是下一步反演计算的基础.其中 59.54 keV 射线的峰谷比设为 X1, 59.54 keV 射线 全能峰探测效率参数设为 X2, 26.4 keV 或 129 keV 射线全能峰探测效率参数设为 X3, E 表示根据实 验获得的数学期望值,则它们的数学期望分别表示为:

$$\frac{N_{\rm m}}{N_{\rm vm}} = E(X_1),\tag{4}$$

$$\varepsilon(h_{\rm e}) = E(X_2),\tag{5}$$

 $\varepsilon(h_{\rm e})^* = E(X_3),\tag{6}$

v表示谷区,对于 59.54 keV 射线一般取 54— 57 keV 这个区间, h表示虚拟点位置 (虚拟点位置 一般在源对称轴线上变化),m表示实测谱值,e表 示等效虚拟点,上标*用于区分虚拟点位置处不同 能量射线全能峰探测效率.(5)和(6)式左边的虚 拟点源位置 h_e处的探测效率值是通过核素活度比 值(3)式定出,峰谷比通过能谱获得.

第二步: 热区和深层干扰源的虚拟点源位置反 演计算. 将热区和深层干扰源分别虚拟成其虚拟点 源, 如图 1 中所示, 用 a 表示图 1 中上虚拟点位置 (热区虚拟点位置), b 表示下虚拟点位置 (深层干 扰源虚拟点位置), 等效虚拟点是由这两个虚拟点 按不同的权重组合而成的. 设 59.54 keV 和 26.4 keV 或 129 keV 射线在对称轴上不同位置按不同权重 组合模拟计算结果设为 X_i, 表示为:

$$\frac{N}{N_{\rm v}}(h_{\rm a})w_{\rm a} + \frac{N}{N_{\rm v}}(h_{\rm b})(1-w_{\rm a}) = X_1, \qquad (7)$$

$$\varepsilon(h_{\rm a})w_{\rm a} + \varepsilon(h_{\rm b})(1 - w_{\rm a}) = X_2, \qquad (8)$$

$$\varepsilon(h_{\mathbf{a}})^* w_{\mathbf{a}} + \varepsilon(h_{\mathbf{b}})^* (1 - w_{\mathbf{a}}) = X_3, \qquad (9)$$

w表示权重因子; 然后结合第一步获取的 $E(X_i)$ 参数使用最小二乘法计算均方偏差 $\sigma(X)$, 如 (10) 式 所示, 找出均方偏差 $\sigma(X)$ 最小的组合 (其对应的热区和深层干扰源的虚拟点源位置就是所求)即可.

$$\sigma(X) = \sqrt{\frac{1}{3} \sum_{i=1}^{3} \left[(X_i - E(X_i)) / E(X_i) \right]^2}.$$
 (10)

该步反演结果是分别得到热区和深层干扰源的虚 拟点源位置以及它们的射线全能峰探测效率及峰 谷比信息.

第三步:根据第二反演得到热区虚拟点源位置 反演计算热区参数.使用 MCNP 程序模拟计算热 区源项不同参数组合下 (不同衰减层厚、不同源厚 两两组合)的射线全能峰探测效率和能谱的峰谷比 参数,利用 (10)式计算,找出均方偏差*6*最小的组 合 (其对应的衰减层厚度和热区厚度就是所求) 即可.

3 实验研究

根据图 1 的理论计算模型,设计了两种实验探 测模式. 探测模式 1: 75 mm × 25 mm ²³⁹Pu 体源 下方放置 1.6 cm 厚沙土衰减层然后放置在距离平 板型高纯锗探测器铍窗 0.953 cm 位置处,源与衰 减层密度都为 1.34 g/cm³, 如图 2 所示.

Fig. 2. The detection mode 1.

232901-3

探测模式 2:²⁴¹Am 点源通过支架放置在距离 2.0 cm 处的 0.5 cm 厚沙土衰减层上再将其放置 在 75 mm × 25 mm 厚²⁴¹Am 体源上, 然后将它们 整个放置在平板型高纯锗探测器铍窗进行放射性 测量, 源与沙土地密度都为 1.43, 如图 3 所示.

谱获取时间足够长,保证使其统计涨落控制 在1.0%以内,实验数据见表1和表2(表1和表2 中分别给出了体源和点源单独测量数据,只是为了 获得两种探测模式的实验参数,因此不涉及计算参 数的数据,在此未提供).

Fig. 3. The detection mode 2.

Table 1. Energy peak count of experimental spectrum and process results for detection mode 1.									
汕阜对各	测导时长,4/105-	M (E4 E7 $\log W$)	$N = (50.54 \ln N)$	$N_{\rm c}$ (51.69, 190 $\log V$)	$A/10^4 { m ~Bq}$				
侧里刈豕	侧里的下t/10°s	$N_{241} (54 - 57 \text{ keV})$	N_{241} (59.54 KeV)	N_{239} (51.02, 129 keV)	$^{241}\mathrm{Am}$	239 Pu			
探测模式1	3.16	4325136	25339979		_	_			
²³⁹ Pu体源	2.00	_	75248200	239711, 52717	4.56	18.7			
表 2 探测模式 2 实验能谱峰计数及处理结果 Table 2 Energy peak count of experimental spectrum and process results for detection mode 2									
$A/\times 10^4$									
测量对象	测量时长 t/10	$N_{241} (26.4 \text{ keV})$	$N_{241} (54-57 \text{ keV})$) $N_{241} (59.54 \text{ keV})$ -	26.4 keV	$59.54 \ \mathrm{keV}$			
探测模式2	4.00	240050	9531180	65964536	8.16	8.91			
²⁴¹ Am点源	m点源 0.565 4160024			65331456	7.74	8.38			

45346

表1 探测模式1实验能谱峰计数及处理结果

将计数通过计算转化为活度,活度计算结果见 表 1,其中探测效率数据是由蒙特卡罗模拟计算给 出.体源效率: 51.62 keV 为 2.03 × 10⁻², 59.54 keV 为 2.3 × 10⁻², 129 keV 为 2.72 × 10⁻²,其中活度 计算结果 18.7 × 10⁴ Bq 是取了 ²³⁹Pu 核素两条射 线计算结果的平均值, $A_{239}/A_{241} = 18.7/4.56 =$ 4.1 (对于未知源项目标该比值一般是通过取样测 量得到,或根据已有资料查询得到).²⁴¹Am 源谷区 选择 54—57 keV 能区,探测模式 1下峰谷比为 25339979/4325136 = 5.9.

0.800

²⁴¹Am体源

表 2 中, ²⁴¹Am 点源效率 26.4 keV 为 3.66 × 10⁻², 59.54 keV 为 4.16 × 10⁻²; ²⁴¹Am 体源效率 26.4 keV 为 4.44 × 10⁻³, 59.54 keV 为 2.26 × 10⁻². 在探测模式 2 下, 通过²⁴¹Am 两个射线能量计算其 活度,其总活度为点源活度加体源活度,如 26.4 keV 射线能量计算总活度为 8.16 × 10⁴ (Bq) = (7.74 + 0.423) × 10⁴ (Bq), 59.54 keV 射线能量 计算总活度结果为 8.91 × 10⁴ (Bq) = (8.38 + 0.532) × 10⁴ (Bq), 且 A_{241} (26.4 keV)/ A_{241}

(59.54 keV) 比值理论上应该是 1.0, 但由于存在系统 误差,²⁴¹Am (26.4 keV)/²⁴¹Am (59.54 keV) 比值计算结果为 8.16/8.91 = 0.92, 对于这个系统误差可以不用校正,因为后面计算都采用该比值. 探测模式 2 下,峰谷比为 65964536/9531180 = 6.9.

2745773

0.423

0.532

4 理论计算研究

根据实验设计及探测器参数,建立了如图 4 和 图 5 所示的蒙特卡罗计算模型 (图中的数字及位置 坐标表示尺寸参数). 探测器参数:晶体角死层被两 个球及一个圆柱所切得到,球心在 Z 轴上坐标分 别为 1.90 和 3.44, 球半径分别为 1.90 和 2.06. 图 中单位为 cm. 铍窗密度 1.85, 沙土成分由下列元 素 (符号)组成: O(52.2%), Si(30.6%), Al(5.49%), Fe(2.21%), Ca(8.04%), Mg(1.40%), 括号内为质 量分数.

对于探测器模式 1, 只有图 1 中沙土衰减层和 体源, 没有干扰源的存在. 但模拟的过程中都是假 设有干扰源存在的, 下面介绍其模拟计算过程.

图 4 探测模式 1 的 MCNP 程序计算模型

Fig. 4. Calculation model of MCNP procedure for detection mode 1.

图 5 探测模式 2 的 MCNP 程序计算模型 Fig. 5. Calculation model of MCNP procedure for detection mode 2.

4.1 等效虚拟点源

在对称轴上, 计算不同位置处点源探测效率, ²⁴¹Am 主要 计 算 其 59.54 keV 射 线 探 测 效 率, ²³⁹Pu 主要计算其 129 keV 射线探测效率, 其计算 结果如表 3 中数据所示.

根据表 3 中探测效率值,结合表 1 中探测模式 1 的能峰数据计算不同位置坐标处的 Q 活度比

值,可以看出,在坐标为-2.80处时 Q 比值为 4.1, 和表 1 中活度比值一致,因此,可以认为等效虚拟 点源 (如图 4 中)的位置坐标为 (0 0 -2.80).等效 虚拟点源包含了两部分的等效,一部分是测量对象 体源的贡献,一部分是干扰源的贡献 (干扰源可以 是点源、面源和体源,统一将其转化成虚拟点源), 将这两部分各自虚拟成点源,可以认为等效虚拟点 源由体源虚拟点源和干扰源虚拟点源按不同的权

h/cm	$arepsilon_{241}(h)/10^{-3}$	$arepsilon_{239}(h)/10^{-3}$	$A_{241}/10^4 \;\mathrm{Bq}$	$A_{239}/10^{5}\;{\rm Bq}$	Q	$N/N_{ m v}(h)$				
-1.25	24.3	24.6	0.921	0.497	5.4	8.05				
-1.60	17.9	19.5	1.24	0.629	5.0	6.99				
-2.00	12.9	15.1	1.73	0.810	4.7	6.12				
-2.40	9.45	11.9	2.36	1.03	4.4	5.44				
-2.80	7.00	9.45	3.19	1.30	4.1	4.92				
-3.20	5.24	7.60	4.26	1.61	3.8	4.51				
-3.60	3.97	6.16	5.62	1.98	3.5	4.18				
-3.80	3.47	5.56	6.45	2.20	3.4	4.04				
-4.00	3.03	5.04	7.37	2.43	3.3	3.90				

表 3 等效虚拟点源探测效率及峰谷比

Table 3. The detection efficiency and peak/valley of equivalent virtual point source.

重组合而成,因此下一步的目标就是找出这个权重 和体源的虚拟点源位置坐标.

4.2 体源虚拟点源

等效虚拟点源的探测效率值 7.0 × 10⁻³ 和 9.45 × 10⁻³ 即为 (5) 式和 (6) 式的数学期望值, 峰 谷比 5.9 为 (4) 式的数学期望值. 根据表 3 中不同 点位置处的探测效率,计算不同虚拟点位置和不同 权重组合下的等效探测效率及等效峰谷比, 计算结 果见表 4. 根据这些值按 (7)—(9) 式计算其理论值 X_i, 最后按理论计算公式 (10) 计算均方偏差, 如表 4所列.

表 4 中热区虚拟点源位置坐标为-1.25, -1.60, -2.00 和-2.40 cm, 干扰源的虚拟点源位置坐标为 -3.20, -3.60, -3.80 和-4.00 cm. 省去中间过程, 直 接计算得到虚拟点坐标、权重及均方偏差的一一对 应的表5.

从表 5 中可以看出, 均方偏差最小的值为 0.167, 其对应的体源虚拟点位置坐标为--2.40, 干

	Table 4. Th	e mean square d	leviation calculat	tion data of equ	ivalent virtual p	point at differen	t combination	n.
w	h/cm	$arepsilon(h)/10^{-3}$	$arepsilon^*(h)/10^{-3}$	$N/N_{ m v}(h)$	$X_2/10^{-3}$	$X_3/10^{-3}$	X_1	$\sigma(X)$
0.10	-1.25	24.3	24.6	8.05				
0.90	-3.20	5.24	7.60	4.51	7.15	9.30	4.87	0.177
0.90	-3.60	3.97	6.16	4.18	6.00	8.01	4.56	0.308
0.90	-3.80	3.47	5.56	4.04	5.55	7.47	4.44	0.385
0.90	-4.00	3.03	5.04	3.90	5.16	6.99	4.31	0.458
0.10	-1.60	17.9	19.5	6.99	_	—		
0.90	-3.20	5.24	7.60	4.51	6.51	8.79	4.76	0.217
0.90	-3.60	3.97	6.16	4.18	5.36	7.50	4.46	0.396
0.90	-3.80	3.47	5.56	4.04	4.91	6.96	4.33	0.479
0.90	-4.00	3.03	5.04	3.90	4.52	6.48	4.21	0.554
0.10	-2.00	12.9	15.1	6.12	_	—		
0.90	-3.20	5.24	7.60	4.51	6.01	8.35	4.67	0.277
0.90	-3.60	3.97	6.16	4.18	4.86	7.06	4.37	0.474
0.90	-3.80	3.47	5.56	4.04	4.41	6.52	4.24	0.559
0.90	-4.00	3.03	5.04	3.90	4.02	6.04	4.12	0.635
0.10	-2.40	9.45	11.9	5.44		_		
0.90	-3.20	5.24	7.60	4.51	5.66	8.03	4.61	0.327
0.90	-3.60	3.97	6.16	4.18	4.52	6.74	4.30	0.530
0.90	-3.80	3.47	5.56	4.04	4.06	6.20	4.18	0.616
0.90	-4.00	3.03	5.04	3.90	3.67	5.72	4.05	0.693

表 4 不同组合下等效虚拟点的均方偏差计算数据

扰源对应的虚拟点位置坐标--3.20, 而其对应的权 重都为 0.50. 由于两个点位置很近权重又一样, 因

此,可以认为没有干扰源的存在,实际上等效虚拟 点位置坐标就是体源的虚拟点位置坐标.

表 5 不同组合下等效虚拟点的均方偏差计算数据 are deviation calculation data of equivalent virtual point

Table 5. The mean square deviation calculation data of equivalent virtual point at different combination.	Table 5.	The mean square deviation	on calculation data	of equivalent v	virtual point at	different combination.
---	----------	---------------------------	---------------------	-----------------	------------------	------------------------

h/cm	w	$\sigma(X)$	w	$\sigma(X)$	w	$\sigma(X)$	w	$\sigma(X)$	w	$\sigma(X)$
-1.25	0.10		0.20		0.30		0.40		0.50	_
-3.20	0.90	0.177	0.80	0.355	0.70	0.664	0.60	0.988	0.50	1.32
-3.60	0.90	0.308	0.80	0.223	0.70	0.508	0.60	0.848	0.50	1.20
-3.80	0.90	0.385	0.80	0.201	0.70	0.448	0.60	0.792	0.50	1.15
-4.00	0.90	0.458	0.80	0.210	0.70	0.399	0.60	0.744	0.50	1.11
-1.60	0.10	_	0.20		0.30	—	0.40		0.50	_
-3.20	0.90	0.217	0.80	0.195	0.70	0.360	0.60	0.568	0.50	0.784
-3.60	0.90	0.396	0.80	0.210	0.70	0.234	0.60	0.435	0.50	0.669
-3.80	0.90	0.479	0.80	0.262	0.70	0.203	0.60	0.384	0.50	0.622
-4.00	0.90	0.554	0.80	0.318	0.70	0.196	0.60	0.343	0.50	0.583
-2.00	0.10	_	0.20		0.30	—	0.40		0.50	_
-3.20	0.90	0.277	0.80	0.187	0.70	0.177	0.60	0.256	0.50	0.371
-3.60	0.90	0.474	0.80	0.328	0.70	0.210	0.60	0.181	0.50	0.272
-3.80	0.90	0.559	0.80	0.399	0.70	0.257	0.60	0.178	0.50	0.238
-4.00	0.90	0.635	0.80	0.465	0.70	0.307	0.60	0.193	0.50	0.215
-2.40	0.10	_	0.20		0.30	—	0.40		0.50	_
-3.20	0.90	0.327	0.80	0.264	0.70	0.209	0.60	0.173	0.50	0.167
-3.60	0.90	0.530	0.80	0.435	0.70	0.344	0.60	0.261	0.50	0.195
-3.80	0.90	0.616	0.80	0.510	0.70	0.407	0.60	0.309	0.50	0.225
-4.00	0.90	0.693	0.80	0.577	0.70	0.464	0.60	0.356	0.50	0.257
h/cm	w	σ ((X)	w	$\sigma(X)$	w	$\sigma(X$)	w	$\sigma(X)$
$h/{ m cm}$ -1.25	w 0.60	$\sigma($	(X)	w 0.70	$\sigma(X)$	w 0.80	$\sigma(X)$)	w 0.9	σ(X)
$h/{ m cm}$ -1.25 -3.20	w 0.60 0.40	σ(1.	(X) .65	w 0.70 0.30	$\sigma(X)$ $-$ 1.98	w 0.80 0.20	σ(X)	w 0.9 0.10	
h/cm -1.25 -3.20 -3.60	w 0.60 0.40 0.40	σ(1. 1.	(X) 	w 0.70 0.30 0.30	$\sigma(X)$ 1.98 1.90	w 0.80 0.20 0.20	$\sigma(X) = -2.31$ 2.26)	w 0.9 0.10 0.10	$\sigma(X)$ 2.64 2.61
h/cm -1.25 -3.20 -3.60 -3.80	w 0.60 0.40 0.40 0.40	σ(1. 1. 1.	(X) 	w 0.70 0.30 0.30 0.30	$\sigma(X)$ 1.98 1.90 1.88	w 0.80 0.20 0.20 0.20	$\sigma(X) = -2.31$ 2.26 2.24)	w 0.9 0.10 0.10 0.10	$\sigma(X)$ 2.64 2.61 2.60
h/cm -1.25 -3.20 -3.60 -3.80 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00	$ w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 $	σ(- 1. 1. 1. 1.	(X) 	w 0.70 0.30 0.30 0.30 0.30	$\sigma(X)$ 	w 0.80 0.20 0.20 0.20 0.20 0.20	$\sigma(X)$ 2.31 2.26 2.24 2.22)	w 0.9 0.10 0.10 0.10 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 2.60
h/cm -1.25 -3.20 -3.60 -3.80 -4.00 -1.60	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \end{array}$	σ(1. 1. 1. 1.	(X) 	w 0.70 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.70	$\sigma(X)$ 1.98 1.90 1.88 1.85 	w 0.80 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	$\sigma(X)$ 2.31 2.26 2.24 2.22)	w 0.9 0.10 0.10 0.10 0.10 0.10 0.10 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60
h/cm -1.25 -3.20 -3.60 -3.80 -4.00 -1.60 -3.20	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \end{array}$	σ(1. 1. 1. 1. 1.	(X) 	w 0.70 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23	w 0.80 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	$\sigma(X)$ 2.31 2.26 2.24 2.22 1.45)	w 0.9 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67
h/cm -1.25 -3.20 -3.60 -3.80 -4.00 -1.60 -3.20 -3.60	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \end{array}$	σ(1. 1. 1. 1. 1. 0.9	(X) 	w 0.70 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16	w 0.80 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	$\sigma(X) = -2.31$ 2.31 2.26 2.24 2.22)	w 0.9 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.90 0.10 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65
h/cm -1.25 -3.20 -3.60 -3.80 -4.00 -1.60 -3.20 -3.60 -3.80 -3.80	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \end{array}$	σ(1. 1. 1. 1. 1. 0.9	(X) 	w 0.70 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13	w 0.80 0.20	$\sigma(X)$ 2.31 2.26 2.24 2.22 1.45 1.40 1.38)	w 0.9 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65 1.64
h/cm -1.25 -3.20 -3.60 -3.80 -4.00 -1.60 -3.20 -3.60 -3.80 -4.00	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \end{array}$	σ(1. 1. 1. 1. 1. 0.9 0.3	(X) 	w 0.70 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13 1.10	w 0.80 0.20	$\sigma(X) = -2.31$ 2.26 2.24 2.22 		w 0.9 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 .60 .67 1.65 1.64 1.63
h/cm -1.25 -3.20 -3.60 -3.80 -4.00 -1.60 -3.20 -3.60 -3.80 -4.00 -2.00	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \end{array}$	σ(1. 1. 1. 1. 1. 0.3 0.3	(X) 	w 0.70 0.30 0.70	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13 1.10 	w 0.80 0.20	$\sigma(X)$ 2.31 2.26 2.24 2.22 1.45 1.40 1.38 1.37)	w 0.9 0.10 0.10 0.10 0.10 0.10 0.10 0.90 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65 1.64 1.63
$\begin{array}{r} h/cm \\ -1.25 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -1.60 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -2.00 \\ -2.00 \\ -3.20 \end{array}$	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.60 \\ 0.40 \end{array}$	σ(1. 1. 1. 1. 0.9 0.8 0.8 0.8 0.8	(X) 	w 0.70 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13 1.10 0.630	w 0.80 0.20	$\sigma(X)$ 2.31 2.26 2.24 2.22 1.45 1.45 1.40 1.38 1.37 0.76)	w 0.9 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65 1.64 1.63 0.898
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \end{array}$	σ(1. 1. 1. 1. 1. 0.3 0.3 0.4 0.4 0.4	(X) 	w 0.70 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13 1.10 0.630 0.561	w 0.80 0.20	$\sigma(X) =$)	w 0.9 0.10 0.10 0.10 0.10 0.10 0.10 0.90 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65 1.64 1.63 0.898 0.875
$\begin{array}{r} h/cm \\ -1.25 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -1.60 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -2.00 \\ -3.20 \\ -3.20 \\ -3.60 \\ -3.80 \end{array}$	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \end{array}$	σ(1. 1. 1. 1. 1. 0.9 0.8 0.8 0.8 0.8 0.4 0.4 0.4 0.4	(X) 	w 0.70 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13 1.10 0.630 0.561 0.533	w 0.80 0.20	$\sigma(X)$ 2.31 2.26 2.24 2.22 1.45 1.40 1.38 1.37 0.76 0.710 0.699)	w 0.9 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65 1.64 1.63 0.898 0.875 0.865
$\begin{array}{r} h/cm \\ \hline -1.25 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -1.60 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -2.00 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ \end{array}$	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \end{array}$	σ(1. 1. 1. 1. 1. 1. 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	(X) 	w 0.70 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13 1.10 0.630 0.561 0.533 0.509	w 0.80 0.20	$\sigma(X)$ 2.31 2.26 2.24 2.22 1.45 1.40 1.38 1.37 0.76 0.710 0.69 0.68)	w 0.9 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65 1.64 1.63 0.898 0.875 0.865 0.857
$\begin{array}{r} h/cm \\ \hline -1.25 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -1.60 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -2.00 \\ -3.20 \\ -3.80 \\ -4.00 \\ -3.80 \\ -4.00 \\ -2.40 \end{array}$	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \end{array}$	σ(1. 1. 1. 1. 1. 1. 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	(X) 	w 0.70 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13 1.10 0.630 0.561 0.533 0.509	w 0.80 0.20	$\sigma(X)$ 2.31 2.26 2.24 2.22 1.45 1.40 1.38 1.37 0.76 0.710 0.69 0.68)	w 0.9 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65 1.64 1.63 0.898 0.875 0.865 0.857
$\begin{array}{r} h/cm \\ \hline -1.25 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -1.60 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -2.00 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -2.40 \\ -2.40 \\ -3.20 \end{array}$	$\begin{array}{c} w \\ 0.60 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.60 \\ 0.40 $	σ(1. 1. 1. 1. 1. 1. 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	(X)	w 0.70 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13 1.10 0.630 0.561 0.533 0.509 0.244	w 0.80 0.20	$\sigma(X) =$) 3 3 5 5 1	w 0.9 0.10 0.10 0.10 0.10 0.10 0.10 0.90 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65 1.64 1.63 0.898 0.875 0.865 0.857 0.372
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} w \\ 0.60 \\ 0.40 $	σ(1. 1. 1. 1. 1. 1. 1. 1. 0.3 0.3 0.4 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7 0.7	(X) 	w 0.70 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13 1.10 0.630 0.561 0.533 0.509 0.244 0.199	w 0.80 0.20	$\sigma(X) = $) 3 3 5 8 1 5 7	w 0.9 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65 1.64 1.63 0.898 0.875 0.865 0.857 0.372 0.351
$\begin{array}{r} h/cm \\ -1.25 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -1.60 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -2.00 \\ -3.20 \\ -3.60 \\ -3.80 \\ -4.00 \\ -2.40 \\ -3.20 \\ -3.60 \\ -3.80 \\ $	$\begin{array}{c} w \\ 0.60 \\ 0.40 $	σ(1. 1. 1. 1. 1. 1. 1. 1. 0.3 0.4 0.4 0.4 0.5 0.6 0.7 0.7 0.7 0.7 0.7	(X) 	w 0.70 0.30	$\sigma(X)$ 1.98 1.90 1.88 1.85 1.23 1.16 1.13 1.10 0.630 0.561 0.533 0.509 0.244 0.199 0.186	w 0.80 0.20	$\sigma(X)$ 2.31 2.26 2.24 2.22 1.45 1.40 1.38 1.37 0.76 0.710 0.69 0.68 0.30 0.26 0.25) 3 3 5 1 5 7 2	w 0.9 0.10	$\sigma(X)$ 2.64 2.61 2.60 2.60 1.67 1.65 1.64 1.63 0.898 0.875 0.865 0.857 0.372 0.351 0.342

4.3 体源参数反演

将表 3 中坐标-2.80 对应的探测效率及峰谷比 作为 (4)—(6) 式的数学期望值, 然后计算不同体源 中心坐标不同体源厚度下的探测效率及峰谷比值, 将这些值作为理论计算值, 并计算其与数学期望之 间的均方偏差, 计算结果如表 6 所列.

体源中心坐标用 h_V 表示. 从表 6 中可以看出, 均方偏差最小的为 0.159, 其对应的体源中心坐标 为-2.45, 体源厚度为 2.5 cm, 和实际情况完全一 致, 充分说明了该技术方法的可行性和准确性. 对 于探测模式 2, 探测器参数和探测模式 1 一致, 但 是沙土密度变为 1.43, 整个测量是贴近探测器进行 的, 129 keV 射线能量变成 26.4 keV. 其计算过程 如表 7—表 9 所列.

表 8 中热区虚拟点源位置坐标为 0.80, 0.40, 和 0 cm, 干扰源的虚拟点源位置坐标为-0.40, -0.60 和-0.80 cm. 从表 8 中可以看出,均方偏差最 小是 0.112,其对应的上下虚拟点源权重都为 0.50, 上下虚拟点源坐标分别为 0 和-0.8 cm,等效虚拟 点源坐标为-0.20 cm,比较靠近上虚拟点位置,两 虚拟点位置较远,权重也占了一半,因此,可以认 为有一个强的干扰源的存在.干扰源只需证明它存 在或者不存在即可,它的存在及其设置只是为了更 为准确地解出体源边界参数,在本文中它的边界参 数是不必求解的.

表 9 中,均方偏差的计算只用了 26.4 keV 射 线能量探测效率和 59.54 keV 射线峰谷比这两项, 没有使用 59.54 keV 射线能量探测效率.从表 9 中 可以看出,最小均方偏差为 0.0220,其对应的体源 中心坐标为 0.25 cm,体源厚度为 1.7 cm,计算得 沙土衰减层厚度为 1.53 mm,由于这一值相对体源 厚度太小,在表层不可能存在这么薄的沙土衰减 层,因此可以将其直接忽略,并入体源厚度,可认 为体源厚度为 2.0 cm,相对真实值 2.5 cm,大概 有 20.0% 左右的相对偏差,其偏差稍微偏大的原 因 是 干 扰 点 源 使 用 低 能 26.4 keV 射 线 穿 透 3.0 cm 左右沙土衰减层后在探测器晶体内产生的

表 6 体源参数的反演计算数据								
Table	6. The	inversion	data of	volume	source			
paran	ieters.							
$h_{ m V}/{ m cm}$	体源厚 度/cm	$arepsilon(h_{ m V})\/10^{-3}$	$arepsilon^*(h_{ m V})\/10^{-2}$	$N/N_{ m v}(h_{ m V})$	$\sigma(X)$			
-2.80	0.80	4.54	0.689	4.69	0.444			
-2.80	1.2	4.60	0.696	4.74	0.431			
-2.80	1.6	4.70	0.705	4.81	0.414			
-2.45	0.80	5.68	0.818	5.03	0.231			
-2.45	1.2	5.76	0.826	5.07	0.217			
-2.45	1.6	5.89	0.837	5.16	0.200			
-2.45	2.0	6.05	0.851	5.26	0.181			
-2.45	2.5	6.31	0.874	5.41	0.159			
-2.45	3.0	6.65	0.903	5.63	0.163			
-2.45	4.0	7.57	0.981	6.24	0.289			
-2.45	4.9	8.78	1.08	7.12	0.539			
-2.00	0.80	7.62	1.03	5.58	0.188			
-2.00	1.2	7.75	1.04	5.64	0.212			
-2.00	1.6	7.93	1.05	5.75	0.248			
-2.00	2.0	8.17	1.07	5.88	0.295			
-2.00	2.5	8.55	1.10	6.11	0.373			
-2.00	3.0	9.03	1.14	6.41	0.474			
-2.00	4.0	10.4	1.25	7.35	0.769			
-1.50	0.80	10.7	1.33	6.43	0.744			
-1.50	1.2	10.9	1.35	6.54	0.781			
-1.50	1.6	11.2	1.37	6.68	0.834			
-1.50	2.0	11.5	1.40	6.90	0.905			
-1.50	3.0	12.9	1.50	7.79	1.18			
-0.50	0.80	22.0	2.34	10.1	2.81			

表 7 等效虚拟点源探测效率、峰谷比及活度比 Table 7. The detection efficiency, peak/valley and acvitiy ratio of equivalent virtual point source.

			•			
h/cm	$arepsilon_{26.4~\mathrm{keV}}(h)/10^{-3}$	$arepsilon_{59.54~\mathrm{keV}}(h)/10^{-2}$	$A_{\rm 26.4\ keV}/10^4\ {\rm Bq}$	$A_{\rm 59.54\ keV}/10^4\ {\rm Bq}$	$A_{\rm 59.54\ keV}/A_{\rm 26.4\ keV}$	$N/N_{ m v}(h)$
0.80	48.200	14.4	0.0519	0.318	6.10	17.0
0.40	13.500	8.79	0.1850	0.523	2.80	12.0
0	4.060	5.56	0.6150	0.826	1.30	9.3
-0.20	2.260	4.48	1.1100	1.030	0.90	8.4
-0.40	1.270	3.64	1.9700	1.260	0.60	7.7
-0.60	0.717	2.98	3.4900	1.540	0.40	7.1
-0.80	0.409	2.45	6.1200	1.880	0.30	6.6

有效计数太少,统计涨落过大,造成了计算误差也 大.因此,不能选用能量过低的低能射线,比如本 文选用的 26.4 keV 能量射线就有些偏低, 会造成 结果一定的偏差.

表 8	不同组合下等效虚拟点的均方偏差计算数据

Table 0. The mean square deviation calculation data of equivalent virtual point at different combination.

1 /		((77)		(77)		(77)		(
h/cm	w	$\sigma(X)$	w	$\sigma(X)$	w	$\sigma(X)$	w	$\sigma(X)$	w	$\sigma(X)$
0.80	0.10		0.20		0.30		0.40		0.50	
-0.40	0.90	2.414	0.80	1.783	0.70	2.807	0.60	3.832	0.50	4.86
-0.60	0.90	2.115	0.80	1.512	0.70	2.569	0.60	3.627	0.50	4.69
-0.80	0.90	1.951	0.80	1.362	0.70	2.433	0.60	3.510	0.50	4.59
0.40	0.10	_	0.20	_	0.30		0.40		0.50	
-0.40	0.90	0.466	0.80	0.291	0.70	0.529	0.60	0.780	0.50	1.03
-0.60	0.90	0.177	0.80	0.119	0.70	0.286	0.60	0.567	0.50	0.857
-0.80	0.90	0.185	0.80	0.245	0.70	0.175	0.60	0.447	0.50	0.753
0	0.10		0.20		0.30		0.40		0.50	
-0.40	0.90	0.190	0.80	0.160	0.70	0.168	0.60	0.235	0.50	0.327
-0.60	0.90	0.431	0.80	0.346	0.70	0.214	0.60	0.123	0.50	0.165
-0.80	0.90	0.620	0.80	0.512	0.70	0.350	0.60	0.197	0.50	0.112
h/cm	w		(X)	w	$\sigma(X)$	w	$\sigma(Z)$	()	w	$\sigma(X)$
0.80	0.60			0.70		0.80		,	0.90	
-0.40	0.40	5.	.88	0.30	6.91	0.20	7.9	3	0.10	8.96
-0.60	0.40	5.	.75	0.30	6.81	0.20	7.8	7	0.10	8.92
-0.80	0.40	5.	.67	0.30	6.75	0.20	7.8	3	0.10	8.90
0.40	0.60		_	0.70		0.80	_		0.90	
-0.40	0.40	1.	.29	0.30	1.55	0.20	1.8	0	0.10	2.06
-0.60	0.40	1.	.15	0.30	1.44	0.20	1.7	3	0.10	2.03
-0.80	0.40	1.	.06	0.30	1.38	0.20	1.6	9	0.10	2.01
0	0.60	-		0.70		0.80	_		0.90	
-0.40	0.40	0.4	427	0.30	0.532	0.20	0.63	39	0.10	0.747
-0.60	0.40	0.5	287	0.30	0.425	0.20	0.56	67	0.10	0.711

表 9 体源参数的反演计算数据

Table 9.	The inversion	data of volume	source parameters.
			1

$h_{\rm V}/{ m cm}$	体源 厚度/cm	$rac{arepsilon^*(h_{ m V})/}{10^{-2}}$	$rac{arepsilon(h_{ m V})/}{10^{-3}}$	$N/N_{ m v}(h_{ m V})$	$\sigma(X)$	$h_{ m V}/{ m cm}$	体源 厚度/cm	$rac{arepsilon^*(h_{ m V})/}{10^{-2}}$	$rac{arepsilon(h_{ m V})/}{10^{-3}}$	$N/N_{ m v}(h_{ m V})$	$\sigma(X)$
0.75	1.00	3.54	10.4	11.90	1.5900	0.15	2.20	2.45	5.00	9.34	0.2310
0.75	0.60	3.47	8.06	11.40	1.0100	0.15	1.60	2.31	2.69	8.54	0.3470
0.75	0.30	3.44	7.23	11.20	0.8060	0.15	1.00	2.21	1.72	8.07	0.5920
0.25	2.00	2.59	5.49	9.61	0.3530	0.15	0.40	2.17	1.32	7.86	0.6920
0.25	1.90	2.56	4.91	9.44	0.2110	0	2.50	2.26	4.40	9.00	0.0900
0.25	1.80	2.54	4.42	9.29	0.0890	0	2.45	2.24	4.14	8.90	0.0470
0.25	1.70	2.51	4.00	9.14	0.0220	0	2.40	2.23	3.90	8.83	0.0640
0.25	1.60	2.49	3.63	9.03	0.1090	0	2.00	2.13	2.52	8.30	0.3950
0.25	1.50	2.47	3.32	8.92	0.1870	0	1.50	2.04	1.60	7.83	0.6260
0.25	1.30	2.43	2.81	8.72	0.3130	0	1.00	1.97	1.13	7.54	0.7470
0.25	0.80	2.37	2.04	8.38	0.5080	-0.25	1.10	1.65	0.602	6.86	0.8910
						-0.25	0.50	1.61	0.457	6.70	0.9300

5 结论与展望

本文提供一种确定放射性可疑区源边界参数 的虚拟点源方法, 解决了现有探测方法无法准确判 定放射性污染区深度边界参数的技术问题. 该技术 方法可应用于多种核素或发射多条特征能量射线 核素的源项目标,其过程是:首先根据核素活度浓 度比值 (一种核素该比值可认为是 1.0, 但要测量 其两条及以上特征能量射线)找出等效虚拟点源, 该虚拟点源特点是由该点算出的活度浓度比值与 给出的一致, 它包含了目标体源及其他干扰源的信 息;其次再将该等效虚拟点按一定的权重分成上下 两个虚拟点源,若上下两个虚拟点源与等效虚拟点 源距离过近且权重相等,则不需要将等效虚拟点源 分成上下两个虚拟点源, 它本身就是体源的虚拟点 源,不存在干扰源,若上下两个虚拟点源距离等效 点源距离较远或权重不一致,则可认为上虚拟点源 就是目标体源的虚拟点源,该虚拟点源的探测效率 及峰谷比和目标体源的一致;最后就是根据目标体 源的虚拟点源的探测效率及峰谷比计算并反演得 到体源边界参数. 该技术的优点是: 1) 利用虚拟点 探测器理论及虚拟点源技术,成功地解决了方程组 法遇到深层干扰源情况下存在病态或不确定大的 难题, 使就地及航测 γ 谱仪发展为一项更为有效的 探测手段; 2) 使用了新原理及测量方式, 不增加新 的物理探测设备,大大减少了经费开支,减少了工 作量及时间.

参考文献

[1] Xiong Z H, Kang W, Gong J, Hu G C, Xiang Y C, Pei Y Q

2003 Atca Phys. Sin. **52** 1 (in Chinese) [熊宗华, 亢武, 龚建, 胡广春, 向永春, 裴永全 2003 物理学报 **52** 1]

- [2] Kováik A, Sy'kora I, Povinec P P 2013 J. Radioanal. Nucl. Chem. 298 665
- [3] Peyres V, García-Torao E 2007 Nucl. Instr. Meth. Phys. Res. A 580 296
- [4] Tian Z N, Ouyang X P, Yin J P, Zhang Y, Yang W J 2013 Atomic Energy Sci. Technol. 47 1411 (in Chinese) [田自宁, 欧 阳晓平, 殷经鹏, 张洋, 杨文静 2013 原子能科学技术 47 1411]
- [5] Elanique A, Marzocchi O, Leone D, Hegenbart L, Breustedt B, Oufni L 2012 Appl. Radiat. Isot. 70 538
- [6] Budjá D, Heisel M, Maneschg W, Simgen H 2009 Appl. Radiat. Isot. 67 706
- [7] Gasparro J, Hult M, Johnston P N, Tagziria H 2008 Nucl. Instr. Meth. Phys. Res. A 594 196
- [8] Huya N Q, Binhb D Q, An V X 2007 Nucl. Instr. Meth. Phys. Res. A 573 384
- [9] Huy N Q 2010 Nucl. Instr. Meth. Phys. Res. A 621 390
- [10] Luís R, Bento J, Carvalhal G, Nogueira P, Silva L, Teles P, Vaz P 2010 Nucl. Instr. Meth. Phys. Res. A 623 1014
- [11] Mohammadi M A, Abdi M R, Kamali M, Mostajaboddavati M, Zare M R 2011 Appl. Radiat. Isot. 69 521
- [12] Presler O, German U, Pelled O, Alfassi Z B 2004 Appl. Radiat. Isot. 60 213
- [13] Mahling S, Orion I, Alfassi Z B 2006 Nucl. Instr. Meth. Phys. Res. A 557 544
- [14] Xiong W B, Qiu C H, Duan T Y, Liu H J, Pan J Y, Chen H T, Liu J H 2011 Atomic Energy Sci. Technol. 45 999 (in Chinese) [熊文彬, 仇春华, 段天英, 刘浩杰, 潘君艳, 陈海涛, 刘 进辉 2011 原子能科学技术 45 999]
- [15] Noteal A 1971 Nucl. Instr. Meth. 91 513
- [16] Tian Z N, Ouyang X P, Zeng M, Cheng Z W 2013 Acta Phys. Sin. 62 162902 (in Chinese) [田自宁, 欧阳晓平, 曾鸣, 成智威 2013 物理学报 62 162902]
- [17] Tian Z N, Chen W, Han B, Tian Y J, Liu W B, Feng T C, Ouyang X P 2016 Acta Phys. Sin. 65 062901 (in Chinese) [田 自宁, 陈伟, 韩斌, 田言杰, 刘文彪, 冯天成, 欧阳晓平 2016 物理 学报 65 062901]

Source boundary parameter of Monte Carlo inversion technology based on virtual source principle^{*}

Tian Zi-Ning[†] Ouyang Xiao-Ping Chen Wei Wang Xue-Mei

Deng Ning Liu Wen-Biao Tian Yan-Jie

(Northwest Institute of Nuclear Technology, Xi'an 710024, China) (Received 16 July 2019; revised manuscript received 19 September 2019)

Abstract

In the *in situ* γ spectrometer based measurement of "hot particular", "radioactive collection point" and "radioactive collection area", only the position of the pollution source can be located roughly, but its boundary parameters such as the thickness of pollution source cannot be given. In this paper, the application of virtual technology to the scanning of γ spectrometer is studied. We convert γ spectrometer measurement objects into a four-layer theoretical model, which are attenuation thickness + radioactive hot area + attenuation thickness +disturb source. Then, the source item layer is virtualized into a point source by using virtual technology. So, the theoretical model is further simplified. Then the detection efficiency and peak/valley ratio parameter of source term are simulated by Monte Carlo method. Finally, the source term parameters are retrieved by using the least square method, and thus establishing the theoretical method and procedure of inversion calculation of source boundary parameters. In this paper, the theoretical and experimental results are shown to be consistent with each other. So, this method is verified to be correct and practicable. Currently, the method can accurately determine the depth distribution parameters of radioactive contamination area for uniformly distributed radio nuclides. In conclusion, the technical achievements can be used to accurately determine the boundary range of the radioactive hot zone, thus realizing the purpose of reducing the waste disposal capacity during the treatment. At the same time, the determination of the inert layer thickness parameters of the target nuclear warhead of Nuclear Test Ban Treaty has a significant reference value.

Keywords: virtual point source, parameter characterization, Monte Carlo simulation, source boundary

PACS: 29.30.Kv, 29.40.Wk, 29.25.Rm

DOI: 10.7498/aps.68.20191095

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11405134).

[†] Corresponding author. E-mail: tzn1019@126.com